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Abstract

The field of Singing Voice Synthesis (SVS) features recent
models leveraging advanced diffusion techniques to gen-
erate realistic singing voices. Our study builds upon the
unique shallow diffusion mechanism in DiffSinger, a main-
stream open-source SVS model, and offers a computational-
linguistic view to quantize and evaluate model generations,
in an attempt to optimize synthesis quality and computa-
tional efficiency. We have trained models with different con-
figurations of shallow diffusion boundaries, including fixed
bounds (the traditional implementation), standard diffusion
(a.k.a. full), and newly proposed Adaptive K Schedules.
Our evaluation metrics revealed that the standard diffusion
model is far from the best although it has the lowest valida-
tion loss at the surface, and the adaptive models outperform
most fix-bound ones. The new evaluation framework that in-
corporates quantitative metrics overcome the subjectivity of
traditional evaluation methods such as Mean Opinion Score
(MOS). Our results have paved the way for future research
to refine the boundary prediction mechanism in shallow dif-
fusion.

1. Introduction

Singing Voice Synthesis (SVS) is a speech-processing
task that benefits from the evolving scene of natural lan-
guage and image generation. Past approaches to the task
oftentimes apply sequence-to-sequence Generative Adver-
sarial Network (GAN) models to generate spectrograms as
images [9]. The task requires an acoustic model to gener-
ate key features, which are embedded by visual represen-
tations such as a mel-spectrogram [2], then feed the rep-
resentations into a vocoder. However, earlier models were
seldom considered to be competent in the task as they were
not equipped with reasonable regularization. Unnatural and
harsh sounds due to over-smoothing were common in the
generated singing segments [7].

DiffSinger [7] is among the first few attempts to apply
diffusion probabilistic models on audio and speech pro-
cessing. In training cycles, it diffuses noise onto mel-
spectrograms to motivate the generator to optimize the vari-
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ational lower bound (ELBO) without the need for adver-
sarial feedback. DiffSinger’s approach not only generates
more realistic mel-spectrograms but also introduces a shal-
low diffusion mechanism to improve the outputs and reduce
training and inference time.

However, the intricate architecture of the model, espe-
cially the nuances of the diffusion and shallow diffusion
mechanisms, poses substantial difficulties in interpretation.
These complexities hinder our ability to thoroughly visual-
ize and analyze specific model features, thereby impeding
our progress in deriving valuable insights from the model’s
behavior and performance.

In this project, we experimented with various implemen-
tation decisions in the DiffSinger model and designed an
evaluation framework to replace the Mean Opinion Score
used in the original study. We committed a few modifi-
cations to the boundary prediction mechanism to dynami-
cally handle the intersection of diffusion and reverse trajec-
tories. We then designed an evaluation scheme to bridge the
gap between objective measurements and subjective quali-
ties that contribute to a convincing singing voice.

We aim to deliver two key outcomes: firstly, an in-depth
comparative analysis between differently configured shal-
low and standard diffusion models to discern their efficiency
and performance in singing voice synthesis; secondly, a ro-
bust, objective benchmark for evaluating SVS models, mov-
ing beyond subjective human judgment to ensure more reli-
able and consistent assessment criteria. This endeavor will
provide valuable insights into optimizing the diffusion pro-
cess for enhanced quality and computational efficiency in
singing voice synthesis.

2. Related Work

The pipeline of SVS usually consists of an acoustic
model to generate the acoustic features conditioned on a
music scores, and a vocoder to convert the acoustic fea-
tures to waveform [7]. Before diffusion, GAN was a popu-
lar choice for SVS [6] [1]. However, it has been recognized
that GAN is unstable and lacks means of regularization [7].

After the debut of diffusion models, their stability and
ease of optimization became preferred by computer vi-
sion researchers, especially those working on image syn-


https://github.com/MoonInTheRiver/DiffSinger

thesis [3]. Diffusion models use Markov chains with fixed
parameters to deduce implicit probabilities step by step thus
generating images from Gaussian noise. DiffSinger takes
advantage of diffusion to generate mel-spectrogram images
of high fidelity which can be converted to vivid audio seg-
ments.

3. Methodology
3.1. Dataset

In the context of this research project, we employed the
publicly available dataset: Opencpop. This dataset com-
prises a collection of 100 unique Mandarin Chinese pop
songs, all performed by a professional female vocalist. The
total length of the audio recordings amounts to approxi-
mately 5.2 hours, recorded in a standard recording studio at
a 44,100 Hz sampling rate. The Opencpop dataset includes
both MIDI and TextGrid annotations tailored for singing
voice synthesis tasks, enhancing its utility for our model’s
training and evaluation. To improve efficiency, the dataset
has been segmented into 5-second fragments, streamlining
the processing and analysis phases of our work.

3.2. Diffusion

We investigate the integration of the diffusion probabilis-
tic model into the SVS system, termed Diffsinger (Liu et al.
2022) [7]. Following the framework proposed by Ho, Jain,
and Abbeel (2020) [3], the model iteratively adds and re-
moves Gaussian noise over 71" steps, transitioning between
the data and a latent Gaussian distribution. We adopt a vari-
ance schedule 3 to control the noise levels, with the pro-
cess computationally optimized to allow efficient synthe-
sis. More concrete diffusion steps can be found in previous
work (Liu et al. 2022 [7]; Ho, Jain, and Abbeel 2020 [3]).
This process ensures that, with appropriate 5 and large 7,
the resulting distribution of y7 can be approximated with a
Gaussian distribution.
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where @ is the cumulative product of 1 — 3 up to time t.

The reverse denoising process described in the Diff-
singer [7] paper is a Markov chain that transitions from the
latent variable yr back to the data y using learnable pa-
rameter §. The approximation at each step is expressed as a
Gaussian distribution with mean jio(y;, t) and variance o7 1.
For the individual step transition:
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3.3. Shallow Diffusion

In our study, we adopted the shallow diffusion mech-
anism proposed in the DiffSinger framework (Liu et al.
2022) [7]. This term refers to a strategy employed to en-
hance the synthesis of the singing voice by leveraging the
strengths of a pre-existing basic decoder model. The ba-
sic decoder trained with a simple loss function produces
outputs that share significant structural similarities with the
ground-truth data distribution. However, the model tends to
over-smooth the outputs, denoted as M , leading to a loss
of detail. Upon observing the diffusion process of both the
decoder outputs M and the ground-truth M, it was noted
that as the diffusion steps increase, the differences between
the two sets of outputs diminish. At a sufficiently advanced
step, the outputs from the two processes become indistin-
guishable. This intersection significantly reduces the com-
plexity of the reverse process. During inference, an auxil-
iary decoder generates the initial simplified output M, con-
ditioned on the music score encoder’s outputs. An interme-
diate sample is then produced at a shallow diffusion step k&,
using the relationship:
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where € is drawn from a normal distribution, and ayis the
product of the noise coefficients up to step k.

By generating an intermediate sample at a shallow step
and proceeding with the reverse process from there, the ap-
proach leverages the structure within the simplified outputs
to more efficiently synthesize the singing voice.

The shallow diffusion approach presupposes the simpli-
fied outputs (M ) and the true data outputs (M) from the
basic acoustic model approximate the same distribution at
a certain diffusion step k. This approximation is critical
as it predicates the starting point for the reverse diffusion
process, which aims to reconstruct the original signal with
reduced computational effort. The full rationale and proof
of the trajectories intersection, which validates this starting
point, is detailed in the original DiffSinger paper. [7]

It should be noted that the successful implementation
of this shallow diffusion hinges on the precise selection
of the diffusion step k. While the original paper employs
a KL-divergence based technique to estimate the optimal
boundary, we approach this estimation with a degree of
caution due to potential concerns about the robustness of
this method. Recognizing the potential limitations of this
method, we undertake a thorough examination through a se-
ries of experimental setups. These experiments vary the dif-
fusion steps to critically assess their influence on the Diff-
Singer model’s performance. Our goal is to optimize the
use of diffusion mechanisms, ensuring they contribute pos-
itively to the synthesis quality and computational efficiency
in our singing voice synthesis tasks.

Mk(M, 6) =



3.4. Adaptive K Scheduler for Boundary Detection

Through our experiment with different fix-bound & con-
figurations, we noticed that a configuration of low k im-
pedes convergence, while high k is concerned with over-
fitting. Therefore, we were motivated to develop a new k
schedule that starts at a high value (i.e. Kgpqi10w) and grav-
itates toward a threshold (i.e. Kj,fer). At the inference
stage, the user should use the threshold value as & because
diffusion steps to avoid exceeding training depth.

The Adaptive K Scheduler outputs a k value based
the loss of the front-end decoded output before the dif-
fusion block in comparison with the ground-truth mel-
spectrogram. Intuitively, a high loss indicates that the model
requires more steps to reach a noise equilibrium that is
equivalent as adding the same steps of noise to the ground-
truth mel-spectrogram. The loss is passed into a tanh func-
tion to clip it down below 1. The hyperparameter « controls
the coefficient of the transformed loss. A momentum that
describes the trend of loss over training steps is also added
in order to facilitate fast k£ decline at early stages. [ con-
trols the updating rate of the momentum and +y sets the ini-
tial momentum. The outcome k; is finally clamped between
Kinfe'r and Kshallow-

Algorithm 1 Adaptive K Scheduler

Require: o> 0,0 <8 <1,7 <0, Kinfer < Kshattow
L; + L’(Ht)
if t = 0 then
Mt <=
kt <~ Kshallow
else
T Bt
pe = Bug—1 + (1= B)1
kt — (Oé tanh (Lt) + ,ut)Kinfe'r
kt — I‘Ollnd(ClamP(l;?t, Kinfera Kshallow))
end if
return k;

As an example, ada20 with the configuration of o = 20,
B8 = 0.95, v = —0.5 has the a k schedule graphed below:
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Figure 1. Dynamic k schedule for ada20 model

4. Experiments
4.1. Model Adoption

The original DiffSinger code repository has not been
maintained and updated, which led us to use a forked ver-
sion developed by the OpenVPI team. To test DiffSinger,
we also used pretrained DiffSinger model to evaluate the
inference outcome comparing from different steps in Figure
2. The OpenVPI DiffSinger is compatible with Opencpop
at the training stage, in which the model trains on batches
of audio segments annotated by an integrated transcrip-
tion file containing phoneme sequence and duration data.
The model relies on pitch prediction from Parselmouth [4].
The OpenVPI DiffSinger consists of two individual mod-
els. The first model is an acoustic model which learns
the acoustic features of the singer(s) and outputs a mel-
spectrogram to be converted to a waveform through HiFi-
GAN [5], a pre-trained vocoder. The second model is a
variance model which learns to generate additional parame-
ters for the acoustic model based on customized user input.
In this study, we will only train and evaluate the acoustic
model, which will be referred to as ”the model” by default,
for it is the core of singing voice generation.

(a) After 2000 steps

(b) After 160000 steps

Figure 2. Inference from different steps by the pretrained Diff-
Singer model

We trained five models with fixed shallow diffusion steps
k at 54, 150, 256, 320, 400. k = 54 is the choice of the
original DiffSinger which had been trained on PopCS [7]
dataset. 150 and 400 are at the lower and upper bound
of the recommended k range respectively. After this, we
will train the model with the our Adaptive K Scheduler at
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a = 18,20. We also performed a training full on standard
diffusion procedure.

For the purpose of inference, we have reserved 5% of
the Opencpop dataset. At the inference stage, we feed a
DS file ("DS” for ”DiffSinger”) that contains essential in-
puts for the model including utterance offset, text, phoneme
sequence/duration/number, note sequence/duration/slur, fO
sequence and fO timestep. The DS file is generated from the
ground-truth audio and transcription data. Consequently,
We will be able to compare our inference results with the
ground-truth mel-spectrograms and audio clips. This eval-
uation step provides us with more opportunities to quantize
the performance of the models.

4.2. Results
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(b) Validation loss over training steps for all models

Figure 3. Validation Total Loss with different K-steps

Figure 3 illustrates the total validation loss of mod-
els with different K-step boundaries, encompassing tra-
ditional fixed bounds(k54, k105, k256, k320, £400), stan-
dard diffusion(full), and our proposedd Adaptive K
Schedulers(adal8, ada20). Notably, while the standard dif-
fusion model appears to offer the lowest validation loss ini-
tially, our findings suggest that this does not balance the per-
formance and efficiency in Singing Voice Synthesis. In fact,
models with Adaptive K Scheduler demonstrated a more
desirable balance, outperforming most models with fixed
K-step boundaries.

As the training steps increased beyond 15k, and models
with Adaptive K Scheduler maintained a lower and more
stable loss, indicating a robustness in performance that the
standard full diffusion model did not achieve. Fixed-bound
models, notably k54 and k256, showed greater variance in
their loss, which can indicate the over-fitting.

Furthermore, the sharp initial decrease in validation loss
across all models suggests a rapid learning phase, which
becomes flat eventually. This flatted effect is notably less
happened in adaptive models, pointing towards a more con-
sistent learning and generalization capability.

In conclusion, the Adaptive K Schedule models not only
improved upon the traditional fixed-bound methods but also
provided a clear path for future advancements in shallow
diffusion for SVS.

4.3. Evaluation

To rigorously assess the performance of our singing
voice synthesis model, we introduce a novel evaluation
framework that transcends the traditional reliance on sub-
jective metrics: the Mean Opinion Score (MOS) evalua-
tion, which is widely used by previous SVS models, in-
cluding Diffsinger [7], XiaoiceSing [8], and so on. MOS
relies heavily on listeners’ subjective perceptions and may
lack replicability. Given the variability inherent in human
judgment, our objective is to provide a more standardized
and replicable suite of evaluation metrics. The proposed
framework comprises the following components:

* Mel-spectrogram: The mel-spectrogram loss serves
as a primary indicator of acoustic fidelity. It is com-
puted as L1 Loss between the pixel-wise values of
the normalized mel-spectrogram of the generated au-
dio and the ground truth. This metric emphasizes the
importance of maintaining the overall acoustic struc-
ture in singing voice synthesis.

e Formant: Formants are resonant frequencies of the
vocal tract that shape the unique quality of vowels.
They are pivotal for speech sound differentiation and
can be quantitatively measured. The first two formants,
F1 and F2, are typically indicative of vowel sounds.
To specifically target the clarity of articulation in syn-
thesized vocals, we compute both F1 and F2 formant
losses. Utilizing Textgrid annotations, vowels are iso-
lated from the audio data, and an L2 loss is computed
between the model’s formants and those of the target
audio. The aggregate of these losses provides a precise
measure of the model’s ability to replicate the distinct
resonances that characterize vowel sounds.

* Intensity (Dynamics): The expressiveness and power
of a singing voice are encapsulated within its dynamic
range. We evaluate this aspect through an L2 loss com-
parison of the normalized intensity contours of each



synthesized audio segment against the ground truth.
This metric underscores the model’s capacity to pro-
duce the dynamic variations that contribute to a more
lifelike singing experience.

Our evaluation framework is designed to provide a com-
prehensive and objective method for assessing singing voice
synthesis systems, moving beyond the subjectivity of MOS
towards a more definitive and quantitative analysis. The
inference performance is assessed based on a linear com-
bination of the aforementioned metrics. This composite
score provides a balanced measure that accounts for acous-
tic quality, clarity of articulation, expressiveness, and com-
putational efficiency, thus enabling a nuanced evaluation of
the model variants:

LY,Y)=w X Lya(Y,Y)
+wy x Lp(V,Y)
4wz x Lra(Y,Y)
+ wy X ﬁ[ntensity(?, Y))

where £(Y,Y') denotes the total loss weighted by different
metrics, w; = 0.6, wy = 0.1, w3 = 0.1, and w4 = 0.2.

The determination of weights for each metric in our eval-
uation framework was guided by the specific characteristics
and relative importance of each metric in capturing the qual-
ity of synthesized singing voices. Given the comprehensive
coverage of acoustic information by the mel-spectrogram,
we assigned it the highest weight of 0.6, reflecting its criti-
cal role in accurately representing the overall acoustic struc-
ture of the voice segment. In contrast, the formant metrics,
which include both F1 and F2 losses, focus specifically on
the clarity of vowel articulations. Considering that vow-
els constitute only a portion of a voice segment and that
these metrics collectively measure the quality of these por-
tions, we assigned each a weight of 0.1, summing to 0.2
for the entire formant category. This allocation acknowl-
edges the significance of vowel clarity while recognizing
that it is only one component of voice synthesis quality.
The intensity metric, assessing the dynamic range and thus
the expressiveness of the voice, was given a weight of 0.2.
This reflects its importance in distinguishing the dynamic
differences between the synthesized and the ground truth
voices but acknowledges that the mel-spectrogram provides
a broader measure of voice quality.

The convergence of these metrics presents an innovative
means to objectively quantify the nuances of synthesized
singing, offering a robust alternative to subjective assess-
ment methods. Our evaluation framework not only reveals
the subtleties captured by the model but also guides future
optimization of the diffusion process.

The results of our evaluation provide compelling evi-
dence of the effectiveness of our proposed metrics in objec-
tively assessing the quality of synthesized singing voices:
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Figure 4. Total loss evaluation by our evaluation metrics

5. Conclusion

This paper presented two principal contributions that ad-
dress critical challenges in the field of singing voice synthe-
sis. First, we introduced the Adaptive K Scheduler, a novel
dynamic boundary detector algorithm that determines the
optimal number of diffusion steps (k) during each training
iteration. This mechanism is pivotal in balancing synthesis
quality against computational efficiency. Our empirical re-
sults demonstrate that this approach not only maintains low
loss values indicative of high synthesis quality but also en-
hances computational efficiency.

Our second major contribution is the introduction of
novel evaluation metrics that offer quantitative methods to
assess the quality of voice synthesis tasks. By moving away
from traditional subjective assessments like the Mean Opin-
ion Score (MOS), these metrics provide a robust quantita-
tive methodology for evaluating the quality of synthesized
voices. These metrics have been meticulously designed to
capture a comprehensive range of acoustic properties, en-
suring a thorough and objective assessment.

Together, these contributions signify a substantial ad-
vancement in the development and evaluation of voice syn-
thesis systems. The Adaptive K Scheduler opens a new
pathway of efficient model training, which could be inte-
grated into the current DiffSinger architecture as an viable
option with a flexible hyperparameter lineup. Our evalu-
ation metrics establish a new standard for objective SVS
quality assessment, for which there is no precedent studies
as alternatives. It has the potential to become a universal
benchmark for SVS experiments.

Looking ahead, our future work will expand on these
foundations in several ways. We plan to conduct user stud-
ies to ensure that our quantitative metrics correlate well with
subjective quality assessments, as measured by Mean Opin-
ion Scores. We hypothesize that voices rated higher by
our evaluation framework will also receive higher subjec-
tive scores, reinforcing the validity of our approach.
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