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1. Introduction

Singing Voice Synthesis (SVS) is a speech-processing
task that benefits from the evolving scene of natural lan-
guage and image generation. Past approaches to the task
oftentimes apply sequence-to-sequence Generative Adver-
sarial Network (GAN) models to generate spectrograms as
images [6]. The task requires an acoustic model to gener-
ate key features, which are embedded by visual represen-
tations such as a mel-spectrogram [1], then feed the rep-
resentations into a vocoder. However, earlier models were
seldom considered to be competent in the task as they were
not equipped with reasonable regularization. Unnatural and
harsh sounds due to over-smoothing were common in the
generated singing segments [4].

DiffSinger [4] is among the first few attempts to apply
diffusion probabilistic models on audio and speech pro-
cessing. In training cycles, it diffuses noise onto mel-
spectrograms to motivate the generator to optimize the vari-
ational lower bound (ELBO) without the need for adver-
sarial feedback. DiffSinger’s approach not only generates
more realistic mel-spectrograms but also introduces a shal-
low diffusion mechanism to improve the outputs and reduce
training and inference time.

However, the intricate architecture of the model, espe-
cially the nuances of the diffusion and shallow diffusion
mechanisms, poses substantial difficulties in interpretation.
These complexities hinder our ability to thoroughly visual-
ize and analyze specific model features, thereby impeding
our progress in deriving valuable insights from the model’s
behavior and performance.

In this project, we want to investigate the various imple-
mentation choices within DiffSinger model along with sys-
tematic evaluation methodologies. We will adopt the train-
ing dataset and the general architecture presented in the pa-
per. With a full replication of the original DiffSinger model,
we plan to commit a few modifications to the boundary pre-
diction mechanism, which is now handled by a neural net-
work to identify the intersection of diffusion and reverse
trajectories. By proposing a new method for computing the
number of steps in each diffusion process, we are able to
compare and contrast DiffSinger models with different set-
tings, and consequently demonstrate the effect of introduc-
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ing shallowness into the diffusion model.

While the original paper evaluated the performance of
the model with a heavy reliance on subjective human assess-
ments which poses limitations in objectivity and scalability,
we aim to devise an evaluation strategy that encompasses
both quantitative measures and qualitative judgments. Our
experimental framework is designed to cohesively test the
impact of varying diffusion steps on the DiffSinger model,
aiming to refine our understanding and application of the
diffusion mechanism in singing voice synthesis.

We will conduct a series of experiments with three dis-
tinct configurations of the model, each trained with a differ-
ent number of diffusion steps. The configurations will be
labeled as follows: Model A (low number of steps), Model
B (medium number of steps), and Model C (high number
of steps). This approach allows us to examine the trade-
offs between synthesis quality and computational efficiency
across different model complexities.

We will also design an evaluation scheme to bridge the
gap between objective measurements and subjective qual-
ities that contribute to a convincing singing voice. This
method encompasses a suite of quantitative metrics aimed
at precisely measuring the impact on synthesis quality and
computational efficiency:

e Pitch Perturbation: Measurement of how accurately
the model reproduces the pitch perturbations found in
human singers.

e Timbre: Evaluation of the richness of synthesized
voice texture.

* Dynamics: Expression range of the synthesized vocal.

* Robustness: Examination of the model’s ability to gen-
erate extremely high and low articulations that are not
present in the training data without artifacts.

* Noise: Quantification of any extraneous noise intro-
duced during the synthesis process, which could de-
tract from the naturalness of the singing voice.

Each model variant will undergo a training regimen tai-
lored to its specific configuration. We will document the
training duration, data requirements, and computational re-
sources to evaluate the scalability and practicality of each
configuration. Special attention will be paid to the conver-
gence behavior of each model, noting any difficulties or pe-
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culiarities in the training process.

To complement our quantitative analyses, we will con-
duct human evaluation studies to assess the perceptual qual-
ity of the synthesized singing. Participants with varied mu-
sical backgrounds will be asked to rate the singing voices
on naturalness, emotional expression, and overall listening
experience. These subjective assessments will provide criti-
cal insights into the models’ performance from the listener’s
perspective [4].

Through this research, we aim to deliver two key out-
comes: firstly, an in-depth comparative analysis between
shallow and standard diffusion models to discern their effi-
cacy and performance in singing voice synthesis. Secondly,
we intend to establish a robust, objective benchmark for
evaluating SVS models, moving beyond subjective human
judgment to ensure more reliable and consistent assessment
criteria. This endeavor will provide valuable insights into
optimizing the diffusion process for enhanced quality and
computational efficiency in singing voice synthesis.

2. Methodology
2.1. Dataset

In the context of this research project, we employed the
publicly available dataset: Opencpop. This dataset com-
prises a collection of 100 unique Mandarin Chinese pop
songs, all performed by a professional female vocalist. The
total length of the audio recordings amounts to approxi-
mately 5.2 hours, recorded in a standard recording studio at
a 44,100 Hz sampling rate. The Opencpop dataset includes
both MIDI and TextGrid annotations tailored for singing
voice synthesis tasks, enhancing its utility for our model’s
training and evaluation. To improve efficiency, the dataset
has been segmented into 5-second fragments, streamlining
the processing and analysis phases of our work.

2.2. Diffusion

We investigate the integration of the diffusion probabilis-
tic model into the SVS system, termed Diffsinger (Liu et al.
2022) [4]. Following the framework proposed by Ho, Jain,
and Abbeel (2020) [2], the model iteratively adds and re-
moves Gaussian noise over 1’ steps, transitioning between
the data and a latent Gaussian distribution. We adopt a vari-
ance schedule 3 to control the noise levels, with the pro-
cess computationally optimized to allow efficient synthe-
sis. More concrete diffusion steps can be found in previous
work (Liu et al. 2022 [4]; Ho, Jain, and Abbeel 2020 [2]).
This process ensures that, with appropriate 8 and large T,
the resulting distribution of yr can be approximated with a
Gaussian distribution.
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where @ is the cumulative product of 1 — /3 up to time t.
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The reverse denoising process described in the Diff-
singer [4] paper is a Markov chain that transitions from the
latent variable yr back to the data y using learnable pa-
rameter 6. The approximation at each step is expressed as a
Gaussian distribution with mean 1o (y;, t) and variance o2 1.
For the individual step transition:
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2.3. Shallow Diffusion

In our study, we adopted the shallow diffusion mech-
anism proposed in the DiffSinger framework (Liu et al.
2022) [4]. This term refers to a strategy employed to en-
hance the synthesis of the singing voice by leveraging the
strengths of a pre-existing basic decoder model. The ba-
sic decoder trained with a simple loss function produces
outputs that share significant structural similarities with the
ground-truth data distribution. However, the model tends to
over-smooth the outputs, denoted as M , leading to a loss
of detail. Upon observing the diffusion process of both the
decoder outputs M and the ground-truth M, it was noted
that as the diffusion steps increase, the differences between
the two sets of outputs diminish. At a sufficiently advanced
step, the outputs from the two processes become indistin-
guishable. This intersection significantly reduces the com-
plexity of the reverse process. During inference, an auxil-
iary decoder generates the initial simplified output M, con-
ditioned on the music score encoder’s outputs. An interme-
diate sample is then produced at a shallow diffusion step &,
using the relationship:

My(M,€) = VapM + /1 — age, 4)
where € is drawn from a normal distribution, and ayis the
product of the noise coefficients up to step k.

By generating an intermediate sample at a shallow step
and proceeding with the reverse process from there, the ap-
proach leverages the structure within the simplified outputs
to more efficiently synthesize the singing voice.

The shallow diffusion approach presupposes the simpli-
fied outputs (M) and the true data outputs (M) from the
basic acoustic model approximate the same distribution at
a certain diffusion step k. This approximation is critical
as it predicates the starting point for the reverse diffusion
process, which aims to reconstruct the original signal with
reduced computational effort. The full rationale and proof
of the trajectories intersection, which validates this starting
point, is detailed in the original DiffSinger paper. [4]



It should be noted that the successful implementation
of this shallow diffusion hinges on the precise selection
of the diffusion step k. While the original paper employs
a KL-divergence based technique to estimate the optimal
boundary, we approach this estimation with a degree of
caution due to potential concerns about the robustness of
this method. Recognizing the potential limitations of this
method, we undertake a thorough examination through a se-
ries of experimental setups. These experiments vary the dif-
fusion steps to critically assess their influence on the Diff-
Singer model’s performance. Our goal is to optimize the
use of diffusion mechanisms, ensuring they contribute pos-
itively to the synthesis quality and computational efficiency
in our singing voice synthesis tasks.

2.4. Dynamic Diffusion Boundary Detection

The shallow diffusion mechanism successfully mitigates
the trouble of overfitting, as we will show in the experi-
ment section. However, we are not convinced that a con-
stant, hyperparameterized diffusion step k. The value of
an optimized k£ depends on not only the size and overall
quality of the training dataset and the other hyperparam-
eters, but also the features of individual front-end output
M , the current training step, etc. Therefore, we will de-
vise a dynamic boundary detector to compute k at each
training step. We will test the performance of our detector
against DiffSinger models using constant k£ configurations
on Opencpop dataset, based on a newly designed evaluation
suite.

3. Experiments
3.1. Model Adoption

The original DiffSinger code repository has not been
maintained and updated, which led us to use a forked ver-
sion developed by OpenVPI team. The OpenVPI Diff-
Singer is compatible with Opencpop at the training stage, in
which the model trains on batches of audio segments anno-
tated by an integrated transcription file containing phoneme
sequence and duration data. The model relies on pitch pre-
diction from Parselmouth. The OpenVPI DiffSinger con-
sists of two individual models. The first model is an acous-
tic model which learns the acoustic features of the singer(s)
and outputs a mel-spectrogram to be converted to a wave-
form through HiFi-GAN [3], a pretrained vocoder. The
second model is a variance model which learns to gener-
ate additional parameters for the acoustic model based on
customized user input. In this study, we will only train and
evaluate the acoustic model, which will be referred to as
“the model” by default, for it is the core of singing voice
generation.

We trained three models with shallow diffusion steps k
at 54, 150, and 400. k = 54 is the choice of the original

DiffSinger which had been trained on PopCS [4] dataset.
150 and 400 are at the lower and upper bound of the recom-
mended k range respectively. After this, we will train the
model with the dynamic boundary detector, and will report
the results in the final stage. We will analyze the models
according to our evaluation metrics, as well as training and
validation loss.

(a) 2000 steps

(b) 160000 steps

Figure 1. Inference results with different steps

For the purpose of inference, we have reserved 5% of
Opencpop dataset. At the inference stage, we feed a DS
file ("DS” for “’DiffSinger”) that contains essential inputs
for the model including utterance offset, text, phoneme
sequence/duration/number, note sequence/duration/slur, fO
sequence and fO timestep. The DS file is generated from the
ground-truth audio and transcription data. Consequently,
We will be able to compare our inference results with the
ground-truth mel-spectrograms and audio clips. This eval-
uation step provides us with more opportunities to quantize
the performance of the models.

3.2. Results

The three graphs above represent the validation total loss
for three models of different K steps, which means the three
different levels of shallow diffusion.

(a) k=54: The graph starts with a high loss value that
drops sharply within the first few thousand iterations. After
this steep decrease, the loss continues to decrease at a much
slower rate. This is typical of a learning process where ini-
tial gains are large, and improvements become incremental
as the model starts to converge.
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Figure 2. Validation Total Loss with different K step

(b) k=150: This graph also starts with a high loss, which
decreases sharply but then increases slightly before decreas-
ing again. The second decrease is less steep than the first.
The slight increase might indicate a momentary learning
challenge or noise in the validation set. However, the over-
all trend is still downward, suggesting that the model with
k=150 is learning over time, albeit with some instability.

(c) k=400: The third graph shows a very different pat-
tern, with the loss starting lower than in the previous two
graphs but then increasing significantly, indicating that the
model might be diverging or overfitting as the iterations
progress. The loss decreases again but remains volatile,
with significant ups and downs. This suggests that k=400
is too high and leads to an unstable learning process.

In summary, a lower k value seems to produce a
smoother and more stable decrease in validation loss, indi-
cating better learning. As k increases, the model’s learning
becomes more volatile. The best k value among the three
seems to be 54, as it results in the smoothest decrease in
loss

3.3. Evaluation

To rigorously assess the performance of our singing
voice synthesis model, we introduce a novel evaluation

framework that transcends the traditional reliance on sub-
jective metrics: the Mean Opinion Score (MOS) evalua-
tion, which is widely used by previous SVS models, in-
cluding Diffsinger [4], XiaoiceSing [5], and so on. MOS
relies heavily on listeners’ subjective perceptions and may
lack replicability. Given the variability inherent in human
judgment, our objective is to provide a more standardized
and replicable suite of evaluation metrics. The proposed
framework comprises the following components:

* Pulse: Pulse duration is a critical measure reflecting
the temporal dynamics of vocal fold vibration. It is in-
tegral to the accurate recreation of rthythm and timing
in both speech and singing, which are vital for the nat-
uralness of the synthesized voice. By precisely mea-
suring the duration of glottal pulses, we can assess the
synthesized voice’s ability to replicate the vocal qual-
ity of the target, including aspects such as breathiness
and tenseness.

* Formant: Formants are resonant frequencies of the
vocal tract that shape the unique quality of vowels.
They are pivotal for speech sound differentiation and
can be quantitatively measured. The first two formants,
F1 and F2, are typically indicative of vowel sounds.
We employ an L1 loss metric to evaluate the accu-
racy of these formants in the synthesized singing voice,
as they closely correlate with perceived vowel quality.
We simulate this through artificial vowels created by a
click train and bandpass filters, allowing us to objec-
tively measure the model’s performance in replicating
vocal tract resonances.

e Pitch: Pitch accuracy is paramount in singing voice
synthesis, reflecting the melodic accuracy of the syn-
thesized voice. We evaluate pitch using both fine-
grained deviation measures and overall pitch contour
matching to ensure the synthesized voice aligns with
the intended melody.

¢ Intensity(Dynamics): The dynamic range of a singing
voice, represented by intensity variations, contributes
to the expressiveness of a performance. We measure
the intensity of the synthesized voice and compare it
to the target to gauge dynamic range accuracy

* Noise Components: Noise components, such as sibi-
lance denoted by ’ess’ sounds, are inherent in natu-
ral speech and singing. They must be accurately mod-
eled to avoid artifacts that detract from the naturalness
of the synthesized voice. We assess the presence and
quality of these noise components within the synthe-
sized output, ensuring they do not exceed natural lev-
els.



Our evaluation framework, thus, provides a comprehen-
sive and objective method for assessing singing voice syn-
thesis systems. It is designed to give a nuanced picture
of performance across temporal, spectral, and dynamic as-
pects, moving beyond the subjectivity of MOS towards a
more definitive and quantitative analysis.

4. Conclusion

In our exploration of the DiffSinger model within the
domain of singing voice synthesis, we have introduced a
novel evaluation framework, aiming to surpass the limita-
tions of subjective assessment methods like the Mean Opin-
ion Score (MOS). By integrating quantitative metrics into
our framework, we evaluated the synthesis quality of our
model variants across different diffusion steps, yielding in-
sights into the trade-offs between model complexity and
performance.

Our experiments confirmed the efficacy of the shallow
diffusion mechanism in capturing the nuances of human
singing. Furthermore, our results have paved the way for fu-
ture research to refine the boundary prediction mechanism
and optimize the number of diffusion steps, contributing to
the advancement of singing voice synthesis technology.
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